MOF sensing copy.jpg

18
Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices
M.G. Campbell, M. Dincă
Sensors 2017, 17, 1108.


17
Bridging the Gaps in 18F PET Tracer Development
M.G. Campbell, J. Mercier, C. Genicot, V. Gourverneur, J.M. Hooker, T. Ritter
Nature Chem. 2017, 9, 1–3.


16
Mechanistic Insight Into High-Spin Iron(I)-Catalyzed Butadiene Dimerization
H. Lee, M.G. Campbell, R.H. Sánchez, J. Börgel, J. Raynaud, S.E. Parker, T. Ritter
Organometallics 2016, 35, 2923–2929.


15
Teaching Outside the Classroom: Field Trips in Crystallography Education for Chemistry Students
B.J. Malbrecht, M.G. Campbell, Y.-S. Chen, S.–L. Zheng
J. Chem. Educ. 2016, 93, 1671–1675.



13
Electrically Conductive Porous Metal–Organic Frameworks
L. Sun, M.G. Campbell, M. Dincă
Angew. Chem. Int. Ed. 2016, 55, 3566–3579.


pub 12.jpg

12
Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Complexes
J. Börgel, M.G. Campbell, T. Ritter
J. Chem. Educ. 2016, 93, 118–121.


11
Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks
M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă
J. Am. Chem. Soc. 2015, 137, 13780–13783.


10
Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal–Organic Framework for Chemiresistive Sensing
M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă
Angew. Chem. Int. Ed. 2015, 54, 4349–4352.


Slide10.jpg

9
Modern Carbon–Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis
M.G. Campbell, T. Ritter
Chem. Rev. 2015, 115, 612–633.


Slide09.jpg

8
Transition Metal-Mediated and Metal-Catalyzed Carbon–Fluorine Bond Formation
M.G. Campbell, A.J. Hoover, T. Ritter
Top. Organomet. Chem. 2015, 52, 1–54.


Slide08.jpg

7
Late-Stage Formation of Carbon–Fluorine Bonds
M.G. Campbell, T. Ritter
Chem. Rec. 2014, 14, 482–491.


Slide07.jpg

6
Late-Stage Fluorination: From Fundamentals to Application
M.G. Campbell, T. Ritter
Org. Process Res. Dev. 2014, 18, 474–480.


5
Support of academic synthetic chemistry using separation technologies from the pharmaceutical industry
E.L. Regalado, M.C. Kozlowski, J. Curto, T. Ritter, M.G. Campbell, A.R. Mazzotti, B. Hamper, C.D. Spilling, M.P. Mannino, L. Wan, J.-Q. Yu, J. Liu, C.J. Welch
Org. Biomol. Chem. 2014, 12, 2161–2166.


Slide05.jpg

4
One-Dimensional Palladium Wires: Influence of Molecular Changes on Supramolecular Structure
M.G. Campbell, S.-L. Zheng, T. Ritter
Inorg. Chem. 2013, 52, 13295–13297.


Slide04.jpg

3
Palladium(III)-Catalyzed Fluorination of Arylboronic Acid Derivatives
A.R. Mazzotti, M.G. Campbell, P. Tang, J.M. Murphy, T. Ritter
J. Am. Chem. Soc. 2013, 135, 14012–14015.


Slide03.jpg

2
Synthesis and structure of solution-stable one-dimensional palladium wires
M.G. Campbell, D.C. Powers, J. Raynaud, M.J. Graham, P. Xie, E. Lee, T. Ritter
Nature Chem. 2011, 3, 949–953.